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Modern business information systems are typically multi-tiered
distributed systems comprising Web services, application services,
databases, enterprise information systems, file systems, storage
controllers, and other storage systems. In such environments, data
is stored in different forms at multiple tiers, with each tier
associated with some level of data abstraction. An information
entity owned by an application generally maps to several data
entities, logically associated across tiers and related to the
application. Discovery of such relationships in a distributed system
is a challenging problem, complicated by the widespread adoption
of virtualization technologies and by the traditional tendency to
manage each tier as an independent domain. In this paper, we
present a system and methodology for model-driven discovery of
end-to-end application–data relationships spanning multiple tiers,
from the applications to the lowest levels of the storage hierarchy.
The key to our methodology involves modeling how data is used
and transformed by distributed software components. An important
benefit of our system, which we call Galapagos, is the ability to
reflect business decisions expressed at the application level to the
level of storage.

Introduction

Modern applications follow a layered architecture using

application, middleware, and storage tiers [1–5]. The

layering reflects various levels of application abstraction

such as the user interface, business logic, application

services, data services, and group communication

services, as well as infrastructure (servers, network, and

storage) virtualization. In such layered systems, IT

(information technology) architects and administrators

typically pose questions such as, ‘‘Which storage

resources are used by a particular application?’’ and

‘‘Which applications and middleware systems depend on

a particular file?’’ Answers to these questions, in the form

of end-to-end application–data relationships, have a

number of important uses, such as deriving business-

driven information life-cycle management (ILM) policies

involving data, improving accuracy of root-cause analysis

in case of failures, accounting for storage usage on a per-

application basis, and reasoning about data and

application availability and reliability.

The task of discovering application–data relationships

in distributed systems is complicated by two trends in

system design. First, virtualization [6–9] results in systems

consisting of multiple tiers separated by narrowly defined

interfaces, leading to limited visibility of the underlying

resources [10]. Second, the traditional trend of viewing

and managing each tier as an independent domain (e.g.,

application [11], database [12], or storage [13]) contributes

to disconnections in the flow of information linking

applications to data at each tier. In this paper, we present

a system and methodology for discovering end-to-end

relationships between specific instances of data and

application components, that is, from high-level

applications to the low-level data and storage tiers.

An example of the complexity of the problem is shown

in Figure 1 in which a hosting environment is shared by
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two applications, A and B. Each middleware tier

supporting A and B implements several instances of data

abstractions. In addition, each tier is typically partitioned

over several physical resources (e.g., servers and storage

controllers).End-to-end relationships betweenapplications,

data-access objects (e.g., Java** Version 2 Enterprise

JavaBeans [EJB]), relational tables, files, logical volumes,

and storage volumes can be fairly complex, as shown in

this example. The complexity arises from the number and

types of middleware technologies involved and the large

number of tiers present in virtualized distributed systems.

Previous research [1–3, 5] focused on methods to

discover cross-domain relationships in distributed systems,

either by statistically analyzing system behavior [1, 5], on

the basis of observation of system activity, or by using

system support (e.g., passing tokens or other metadata

over communication between layers [2, 3]). In addition,

several commercial tools focus on discovery of

infrastructure assets by scanning a range of IP (Internet

Protocol) addresses and querying the systems that

respond [14–16]. Network communication relationships

among applications are discoverable by capturing

network packets and analyzing their headers [17].

Additional refinement of asset discovery has been

achieved through template-driven discovery of

applications [18]. Our system and methodology, called

Galapagos, follows a model-driven approach [19, 20] to

enrich basic infrastructure discovery with more

comprehensive information about dependency between

applications and data (e.g., business objects, tables, files,

and other information entities).

Galapagos uses reusable data-location and data-

mapping models of individual software components,

which contain introspection code (mostly scripts) to

extract data-specific information from software

components. Figure 2 depicts a representation of the key

system aspects captured in any Galapagos model. The

modeling in Galapagos is characteristic of the gray-box

approach [21] to systems analysis, which is based on

understanding of general behavior rather than internal

details of systems. It is important to note that Galapagos

models are unrelated to the queuing-network models that

are typically used for performance analysis [22].

Galapagos combines models of software components

with a distributed crawling (graph traversal) algorithm to

discover end-to-end, multi-tier dependencies between

applications and data in a tiered distributed system. This

is accomplished in an easily extensible fashion. The act of

adding a new middleware tier simply ‘‘plugs’’ the new tier

into the overall end-to-end relationship representation

model.

Because Galapagos does not rely on monitoring

runtime activity, it is applicable even in cases where

system activity cannot be captured, because of privacy,

performance, or intrusion constraints. Therefore,

Galapagos is complementary to systems such as

Project5 [1], Causeway [2], and Pinpoint [3].

The key elements of Galapagos include the following:

1. Use of a composable model of data use and mapping

by a middleware system or an application, as well as

associated introspection methods.

2. A scalable crawling algorithm that composes

information from several model instances in a

distributed system, creating a complete set of

end-to-end application–data relationships.

3. Analysis of collected information to solve a broad

range of storage management problems.

The remainder of this paper is structured as follows:

First we describe the application awareness that

Galapagos brings to storage management. Next, we

provide an overview of the Galapagos system and

methodology. We then describe the Galapagos models

and the discovery process. The implementation and

evaluation of Galapagos are described next, and the last

Figure 1

Relationships between applications and data objects through a 

distributed system. Relationships specific to application A are 

shown in bold. (EJB: Enterprise JavaBeans**; App: application; 

DBMS: database management system; LVM: logical volume 

manager; LUN: logical unit number; RAID: Redundant Array of 

Independent Disks.)
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two sections present related work and concluding

remarks.

Application-aware storage management

Manual discovery of the storage dependencies and usage

of an application is difficult and impractical for large

distributed systems. For example, consider the file /mnt/

db2/node000/sql005.dat on a server file system, as shown

in Figure 2(a). It is evident that manual identification of

that file (e.g., which relational table is it part of or which

application does it map to) is difficult and error prone,

even for experts in system administration. The ability to

identify the data and storage resources used by an

application enables a wide range of important uses,

discussed in the following paragraphs.

Information life-cycle management (ILM)—Galapagos-

discovered applications–data relationships facilitate the

alignment of enterprise information with the most

appropriate and cost-effective storage infrastructure using

these relationships. A number of important ILM tasks

such as provisioning, back up, and migration can be

performed in an application-aware manner, reflecting the

business value of applications to the data.

Documentation and reporting of storage usage—Current

storage reporting tools lack knowledge of end-to-end

application–data relationships and thus present storage

usage only on a per-host or per-controller basis.

Documentation and reporting of storage usage, a key

deliverable in storage service outsourcing deals, can

indicate storage inefficiencies or improve the accuracy of

charging for storage use.

Server consolidation—Technology advances, cost

reduction, or data-center maintenance tasks often require

migration of data between storage systems. To ensure

minimal impact on online operations, there is a need to

plan migration actions in an application-aware manner,

Figure 2
Composition of DLT models creating a graph for the distributed system (a) and key aspects of a DBMS captured in its DLT model (b). [XFS: 

extended file system; DBMS: database management system; UFS: UNIX** file system; DLT: data-locations template; OrderEJB: an 

Enterprise JavaBeans (EJB) data-access object; sd0a: storage device 0a; ORDERTABLE: database table.]
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that is, related volumes or files should be migrated

together as a group or only when the application is

unavailable due to maintenance. This ability restricts the

impact of consolidation to specific, known applications

and enables phased planning of migration actions.

End-to-end reliability assessments—The reliability of

enterprise applications depends on the reliability of the

many different middleware components and the

underlying storage infrastructure on which they are

deployed. To understand and reason about application

availability, one needs to understand 1) various reliability

characteristics of each middleware tier, 2) specific ways

that middleware is configured to serve a particular

application, and 3) the reliability of the underlying

infrastructure as it relates to that application. Galapagos

combines its discovered end-to-end application–data

relationships with information about the storage

infrastructure (e.g., replication, striping, parity schemes,

and other reliability characteristics) to construct an

application-specific, end-to-end reliability assessment that

can be used to indicate potential weaknesses in enterprise

infrastructure.

Recovery planning—Large enterprise systems comprise

several geographically distributed components. Within

these systems, sequences of communicating applications

that participate in a business process must be grouped

together for capacity, availability, and performance

planning. Recovery actions must ensure that the data of

all applications in the process has been recovered and is

available before resuming operation of the entire process.

Storage consolidation and isolation—Hosting multiple

applications on a shared infrastructure is an effective way

to improve efficiencies and reduce operational costs in

consolidated data centers. However, applications that

belong to different customers are often required to be

isolated in order to ensure that they do not interfere.

Through the information it collects, Galapagos can verify

that no two customers share storage systems, data

objects, or software components. It can also help where

consolidation can be achieved effectively.

System and methodology
The basic Galapagos system and methodology is depicted

in Figure 3. In step 1, Galapagos uses the basic

infrastructure information about the target IT

infrastructure (i.e., installed software and hardware

components) as a starting point in the discovery

methodology. This information is provided in the form of

a system configuration (SC) model using industry-

standard representations [23, 24]. An instance of the SC

model can be populated by existing IT infrastructure

discovery systems [14–16] or it can be manually

populated. The SC instance helps identify data- and

storage-related middleware systems that are present in a

particular system configuration; these systems include

application servers, database management system

(DBMS), file systems, logical volume managers, storage

virtualization engines, and RAID (Redundant Array of

Independent Disks) systems.

In step 2, each identified middleware system is

abstracted in a data-locations template (DLT) model,

which describes the data locations and data-mapping

characteristics of the middleware software components,

as shown in Figure 2(b) for the case of a typical DBMS.

Specifically, a DLT describes 1) the data types

implemented and exported by the component, 2) the

mappings of these data types to underlying data types,

and 3) reference to introspection support (scripts) to

extract data-specific information from software

components. DLTs are ‘‘point descriptions,’’ that is, each

DLT is used to model only a single software component.

Only one DLT model is required for each software

component type (e.g., one DLT for IBM DB2*

version 9.1).

In step 3, DLTs are, by design, composable through

their data mappings. Each data type exported by a DLT

is mapped to data type(s) exported by other DLTs

creating a composition of the corresponding DLTs.

Composition of DLTs from successively stacked

middleware in a given configuration produces a model

graph, an example of which is shown in Figure 2(a). In

this example, a top-level application is deployed in a Java

Version 2 Enterprise Edition (J2EE) application server,

implementing and providing the data-access objects (e.g.,

OrderEJB, an EJB) used by the application. The

application server in turn connects to lower-level data

services such as a DB2 DBMS instance and a file system

(XFS) implementing and providing relational tables (e.g.,

OrderEJB) and files (e.g., the DB2 software installation

files), respectively. XFS is supported by a logical volume

manager (LVM), whereas the DBMS instance is

supported by the LVM and a file system (UNIX file

system [UFS]), which implement logical disks and files

(e.g., /mnt/db2/node000/sql005.dat), respectively. These

data and storage tiers are supported by lower-level

storage abstractions such as RAID (implementing disk

device /dev/sd0a) and storage virtualization engines.

In step 4, the model graph produced in step 3 is

traversed by a distributed crawling algorithm using DLT

information along the way to discover end-to-end

application–data relationships across the distributed

system. Starting at the root elements in the model graph

(i.e., the applications and the information entities they

use), Galapagos uses DLT information to map higher-

level data to the lower-level data objects and records the

discovered relationships. The process is repeated

recursively along the model graph, eventually producing a

transitive closure that includes all end-to-end

relationships.
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Creation of a DLT requires some degree of manual

effort (for a detailed discussion, see the section

‘‘Complexity of creating DLT models’’). This effort,

however, is expended only once, ideally at the time of

development of a major version of the middleware

system, and is amortized over repeated uses of the

technology. The key is that a DLT expresses the ‘‘how’’

(i.e., how to discover data use in any installation of this

middleware), whereas in each installation we discover the

‘‘what’’ (i.e., what end-to-end application–data

relationships exist in this particular installation).

The crawling algorithm often requires invocation of

remote management application programming interfaces

(APIs). To avoid the need to install and maintain

software (‘‘agents’’) on the managed environment,

Galapagos uses ephemeral remote processes (‘‘sensors’’),

transferring scripts over the network on demand and

executing them on remote management servers with

appropriate credentials. This approach is often called

‘‘agent-free’’ discovery.

Galapagos models
Galapagos is designed to discover and represent all end-

to-end, multi-tier relationships between applications and

data in an m-tiered distributed system, in a manner that is

technology independent and easily extensible: The act of

adding a new (mþ1)th middleware tier in the m-tiered

distributed system easily ‘‘plugs’’ the new tier into the

existing Galapagos discovery framework. To achieve

interoperability across different distributed systems

technologies, Galapagos adopts key principles of the

Object Management Group Model Driven Architecture**

(MDA**) [19, 20]. MDA is a method for creating system

specifications separating high-level functions from

implementation details. With MDA, functionality and

behavior are modeled only once. An MDA specification

consists of a base platform-independent model (PIM)

plus one or more platform-specific models (PSMs) and

sets of interface definitions, each describing how the base

model is implemented on a different middleware

platform.

Data-locations template

As introduced in the section ‘‘System and methodology,’’

the DLT is defined by a platform-independent meta-

model [Figure 4(a)] encapsulating technology-

independent data specification and mapping concepts.

The root of a DLT is a data service, which is a

technology-independent reference to a middleware

system, and it consists of two parts: a data provider,

focusing on provision and mapping of data, and a data

consumer, focusing on consumption of data.

A key notion in Galapagos is that of an exported data

type, which is an abstraction for data entities,

implemented, stored, and accessed anywhere in a

distributed middleware system. Exported data types have

associated namespaces, which are uniform resource

indicator (URI)-like descriptions of data with the

following general syntax: PROVIDER:/NAME1/

NAME2/. . ./NAMEi. In this scheme, PROVIDER refers

to the software component that exports the data type.

Instances of exported data types are called datasets. A

dataset in the above format may also contain variables

that are bound at a later time to the output of scripts, as

well as wildcards (e.g., the equivalents of *, % in UNIX).

Another key notion in Galapagos is data mappings

between exported data types of a middleware system and

underlying data types provided by back-end data services.

(Here, the term back-end data service refers to any data

service that supports another data service.) Such

mappings are expressed as mapping rules in the data

provider section of the DLT model. Mapping rules

represent introspection methods (e.g., scripts) that extract

data-specific information from software components. In

general, a mapping rule between an exported data type a
and a lower-level exported data type b maps a dataset of

type a to one or more datasets of type b. Given a source

dataset, the target datasets are determined by invoking

the script specified in the mapping rule.

Aside from datasets produced and exported by

middleware on behalf of their clients, applications or

middleware systems consume data directly for their own

Figure 3

Galapagos methodology consists of a four-step process leading to 

discovery of application–data relationships stored in a repository. 

A viewer and analyzer can leverage the collected information to 

solve a broad range of storage management problems.
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purposes. Examples are the files that make up a software

installation or the business objects used by an application.

(Business objects are data objects accessed by

applications in the course of executing a business

process.) If their names are unchanged across

installations, these datasets can be enumerated in the

data-consumption section of the DLT model. Otherwise,

they are dynamically discoverable by querying

information sources listed in the DLT. Information

sources represent introspection methods that extract

data-specific information from software components.

Technology-specific customization

The platform-independent DLT meta-model is

customized for specific software components, producing

platform-specific DLT models. This process requires

mapping DLT meta-model concepts to underlying

software components. The starting point in this process is

the identification of all data representations, implemented

and exported by a specific software component, which are

modeled as exported data types. Figure 4(b) shows an

excerpt of the DLT model for the DB2 version 9.1 DBMS

describing two exported data types, table and column with

namespace syntax dbms:/db-name/table-name/column-

name.

The data mappings of each exported data type are

determined on the basis of the underlying data types to

which the exported data type maps. For example, tables

in a DBMS may map to files (within a file system

directory) or blocks (within a file or logical volume),

depending on the configuration of the database. In the

example in Figure 4(b), the underlying data types are files

and pathname, corresponding to the system-managed and

database-managed storage management modes of DB2,

respectively. The two mapping rules, ‘‘to files’’ and ‘‘to

pathname,’’ point to the introspection methods (scripts)

‘‘mapping to files (SMS)’’ and ‘‘mapping to file or logical

volume (DMS),’’ respectively.

Figure 4
(a) Data-locations template (DLT) and relationship-representation meta-models (in Unified Modeling Language** format). (b) Also shown 

is an excerpt of a DLT model for DB2 version 9.1. (SMS: systems-managed space; DMS: database-managed space.)
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Discovery of data consumed by (i.e., used by) an

application or middleware (i.e., a software component)

for its own purposes requires separate introspection

methods. In the example in Figure 4(b), discovery of the

filesmakingupa software installation (e.g.,DB2version9.1)

is encapsulated in the information source referred to as

‘‘look up DB2 installation files.’’

Technology-specific customization of the DLT model

requires some extensions to the system configuration (SC)

model [23, 24]. These extensions describe the mapping

between specific DLT entities and domain-specific SC

entities where applicable. For example, in a DLT instance

for the IBM WebSphere* Application Server, the data

service entity corresponds to a WebSphere cell.

Installation-specific customization

A DLT model for a software component is, by design,

independent of any specific installation of that software

component. However, to be used for end-to-end

relationship discovery, DLT models must encapsulate

installation-specific information, such as absolute paths

to data and references to SC model entities (such as

machine names and installed software). In most cases,

creating installation-specific DLT instances can be

automatically performed by extracting information from

various sources such as operating system registries,

middleware management APIs, or configuration

management databases [14–16].

Representation of end-to-end relationships

The Galapagos platform-independent model for the

representation of the discovered relationships consists of

dataset entities, data-mapping entities, and SC object

entities (see Figure 4). The data-mapping entity

represents a discovered relationship between a source

and a target dataset (s, t). Each dataset can participate in

any number of data mappings. A set of data mappings

f(d1, d2), (d2, d3), . . ., (dn-1, dn)g represents a data

relationship between d1 and dn. The ‘‘implemented by’’

association (also known as data scope) between dataset

and the SC object (which is a reference to an SC model

entity) points to a logical or administrative subdivision of

a middleware system that implements the specific dataset.

A data scope can be a volume group in a RAID

controller, a partition group in a database system, or a

cluster of application servers in a J2EE environment. The

‘‘used by’’ association (also known as data client) between

data mapping and SC object points to an SC model entity

that uses the source dataset of the data mapping. For

example, a data client of a database table may be a J2EE

application server.

Complexity of creating DLT models

DLT model instances and associated runtime support

are currently created by experts, developers, or

practitioners with intimate knowledge of the data export

mechanics of the particular middleware system. We

believe that a first-order approximation of the DLT can

be produced automatically by software modeling tools

and subsequently validated and enhanced by a human

expert. We outline the complexity of several real-life

DLT models in the section on implementation. DLT

models are easier to create in the case of execution

environments with well-defined installation and data-

access interfaces, such as J2EE and SAP (Systems,

Applications, and Products in Data Processing).

Discovery of data use is more difficult in less-structured

application containers. Particularly challenging cases

include those involving unstructured applications

running on standard operating systems and placing data

in shared directories (e.g., /tmp). However, such data use

can be discovered by examining the relevant installation

logs or by analyzing program sources.

The correctness and accuracy of a DLT is a critical

issue. A DLT model that does not fully describe all uses

and transformations of data by a software component

will cause some application–data relationships to be

missed by the discovery process. When a model is

produced by an expert and considered mature (e.g., after

a reasonable amount of experimentation, debugging,

and production use), it is expected to be accurate when

applied to its intended domain, which is the correct

version of the middleware system it models. Any DLT,

however, can be continuously validated during

production use, using runtime monitoring techniques.

Discovery process
The Galapagos discovery process starts with

identification of data services (applications and

middleware systems that can be modeled with DLTs) in

the SC model of the distributed system. Next, DLT

models for each data service are created or reused as well

as customized to the specific installation. Data

dependencies between DLT models form a graph

structure such as that shown in Figure 2(a). In this

graph, two DLT models (e.g., DBMS and UFS) are

connected by a rectangle representing data dependence

over a data type b, when the first DLT features a

mapping rule M1 between data types a and b, and the

second DLT features a mapping rule M2 between

b and c. An invocation of M1 may be followed by an

invocation of M2, resulting in a data mapping between

a and c. This composition of M1 and M2 extends to any

number of DLTs and mapping rules.

Distributed crawling algorithm

The crawling algorithm performs a depth-first search of

the multirooted graph shown in Figure 5. In the general

case, we consider n applications A1–An deployed over m
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successive data services (which are middleware tiers) M1

to Mm. Data types at the leaves of the graph that are not

associated with any data mappings are referred to as

‘‘final.’’

The inputs for the algorithm include 1) an SC model

annotated with identified applications and data services,

and 2) DLT model instances for each identified

application and data service The algorithm is as follows.

Algorithm

1. For each root application Ar in the SC model,

discover the datasets fDig used by Ar by querying the

data services to which Ar connects.

2. For each Di,

a. If Di is a final data type, record data relationship

and backtrack.

b. If Di is not a final data type and Di has been

encountered before, record the discovered data

relationship and backtrack.

c. If Di is not a final data type and Di has not been

encountered before, visit the data service

exporting Di and access the DLT model of the

data service.

i. Use applicable mapping rules in DLT to

map Di to a list of datasets fD0
jg. The rules

may require the injection of a sensor into a

remote administrative point.

ii. For each D0
j, record the discovered

dependency of D0
j, then go to step 2(a) and

repeat for D0
j.

The output contains application–data relationships

stored in a repository.

Complexity

Each application uses a number of datasets (up to b such

datasets), which are provided by data service M1. Each

such dataset maps to a number of dependent datasets (up

to f1 such datasets) provided by data service M2. In a

recursive manner, each dataset maps to a number of

underlying datasets [fi such datasets in this (iþ1)th tier] up
to the last data service Mm. Note that each dataset may be

mapped multiple times under different data mappings. In

practice, the number of mappings per data type rarely

exceeds four. The complexity of the algorithm is

proportional to the number of nodes visited, of which a

conservative bound is

O n3 b3
Ym�1

i¼1

f
i

 !
: ð1Þ

Here, n is the number of root applications. The

exponential trend in the product of Equation (1) suggests

that scaling challenges may arise as the number of data

services (m) or the data-mapping fanout (controlled by f)

increases. However, in typical commercial installations,

the parameters f and m are small, so the exponential

factor is not expected to be a problem in practice.

Another factor that affects scalability is the degree of data

sharing between applications. For datasets shared by

more than one application or middleware component,

Galapagos need only crawl downstream from them once,

the first time they are visited.

The application–data relationships discovered by

Galapagos indicate datapaths that can potentially be

followed by transactions through the distributed system.

There is no guarantee, however, that these paths are

followed on a production system. As such, the set of

reported application–data relationships can be a superset

of the set of realized relationships.

Implementation
The current Galapagos prototype is implemented in Java

and includes a centralized discovery engine, a set of

sensors, an Eclipse** platform-based user interface, and

two repositories: a repository of models and scripts, and a

repository of application–data relationships. Eclipse is an

open-source software framework written primarily in

Java. The SC model representation that we currently use

is a manually pre-populated XML (Extensible Markup

Language) file. Although our prototype includes some

support for basic IT infrastructure discovery, the general

problem has been addressed elsewhere [14] and is outside

the scope of our work.

Our current prototype includes DLT models for

1) J2EE application servers such as distributed

Figure 5

A distributed system consisting of m data services (which are 

middleware tiers) supporting n applications. Solid squares at each 

data service represent datasets. Lines between datasets represent 

data mappings.
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WebSphere and Spring (a layered Java/J2EE application

framework), 2) a persistence framework that enables

mapping SQL queries to Java objects (such as iBATIS),

3) the DB2 database, and 4) Redundant Array of

Independent Filesystems (RAIF) [25], a stackable

(extensible) file system that maps files to other files using

striping, replication, or parity schemes. The

implementation details of these models are outlined in

Table 1. We are currently creating DLT models for IBM

HTTP Server, IBM WebSphere MQ network

communication technology, SAP, and IBM

TotalStorage* Productivity Center (TPC). Our experience

indicates that the Galapagos modeling framework fits a

variety of enterprise middleware systems.

The typical effort required for creating a DLT model,

including introspection support, ranges from 2 days to

2 weeks, with additional time required for testing and

documentation. Accessing management APIs during the

discovery process requires credentials that can be

acquired from interviews with IT infrastructure managers

and application owners. For security reasons, these

credentials offer limited privileges and may require

periodic revalidation. In our experience so far, the process

of acquiring credentials can benefit from streamlining the

interview process and analysis of access requirements and

their security implications.

Applications–data relationships in the distributed

system may continuously change as a result of installation

of new applications or middleware, creation of new data

by existing applications, or dynamic modification to

system configuration for workload management. The

speed with which Galapagos adapts to such changes

depends on whether its discovery process is restarted

periodically or it is performed in response to notification

of a change in the system (such as system configuration

modification or new data created). The appropriate

choice of method depends on the frequency of change.

We evaluated Galapagos on two system configurations:

a cluster of four IBM xSeries* blades running WebSphere

Network Deployment version 5.1 and DB2 version 8.2

(Enterprise Edition), and a cluster of two IBM pSeries*

servers hosting two applications developed for the Spring

J2EE framework using iBATIS to map data-access

objects to tables in a DB2 database. Our scalability

experiments confirmed that the running time of

Galapagos is consistent with the behavior suggested by

Equation (1); that is, the running time is proportional to

the number of relations. We observed that the absolute

running times are in the range of minutes, even for

relatively large configurations. For example, in a

configuration of 2,874 relations, the running time was 245

seconds. We also measured average CPU utilization on

otherwise idle test systems to be less than 5% during

crawling. We are currently scanning configurations with

hundreds of applications and thousands of hosts. The

feedback from administrators of these systems suggests

that the overheads are well within tolerable limits.

Related work

Past studies on discovering dependencies between

distributed systems tiers using online system monitoring

of network traffic and statistical heuristics [1, 5, 17] are

also applicable to discovering applications–data

relationships. However, such systems generally have

drawbacks. First, because they are based purely on

heuristic rules, they cannot eliminate the possibility of

missing some application–data relationships. Second,

they are not easily generalizable to multi-tiered

distributed systems. We believe, however, that a heuristic

approach is useful (particularly when modeling

information is not available) and complementary to the

approach described in this paper.

Various systems have investigated building distributed

system-dependency graphs using passive methods such as

trace collection and offline analysis [1–5, 17] or active

methods such as fault injection [26]. Some of the uses of a

dependency graph include problem determination,

performance analysis, and visualization. Galapagos

differs from these approaches in that it specifically

discovers the use of data by applications. Thus, it

provides a finer-grain scope than dependency between

software components. Systems that trace the provenance

Table 1 Representative complexity of creating DLTs models.

DLT model Exported data types Runtime support for model (lines of code)

WebSphere version 5.1 or 6.0 Application, module, message queue,

Enterprise JavaBeans

5,940

DB2 version 8 or 9 Database, table, column 924

Spring/iBATIS Application, data-access object 1,045

Redundant Array of Independent

Filesystems (RAIF)

File 287
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of data [27, 28] are also related to our work in that they

establish a history of changes to data, and the history

may include the applications that made the changes.

However, distributed multi-tiered systems are beyond the

scope of present provenance prototypes. Galapagos is a

step toward that direction.

Conclusions and future work
In this paper, we presented a novel approach to model-

driven discovery of application–data relationships in

multi-tiered distributed systems. We showed that our

models are sufficiently general to encompass a wide range

of middleware systems and applications. At the same

time, our models are reusable assets that are relatively

easy to create for a variety of systems.

We described a distributed crawling algorithm that uses

the model information to automatically construct

applications–data relationships. For most real-life multi-

tiered distributed systems, Galapagos has reasonable

running times because of the limited number of

middleware tiers and degrees of data-mapping fanout in

such systems. On the other hand, multi-tiered systems

may involve a large number of applications with many

business objects. Fortunately, the performance of

Galapagos depends linearly on these parameters.

Galapagos has important practical applications.

Information collected by Galapagos allows analysis for

information life-cycle management, accounting for

storage use on a per-application basis, detailed reliability

analysis of complex multi-tiered systems, storage

consolidation, recovery planning, customer isolation in

shared hosting environments, and improved accuracy of

root-cause analysis in case of failure.

We are currently deploying Galapagos in an enterprise

environment with hundreds of applications and

thousands of servers. Our experience with this

deployment will be used to create a reusable service

offering with standardized methodology and delivery

process. We are also working on automating the model

creation process to a greater extent. We envision

automated creation of models that are based on program

source or binary code. We are experimenting with

leveraging online activity monitoring tools for validation

of discovered relationships. Eventually, we hope to see

software developers producing DLT-like models as a side

effect of code development to enable Galapagos-style

automated dependency discovery and analysis.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., Silicon Graphics, Inc., The Open Group,
Object Management Group, or Eclipse Foundation, Inc., in the
United States, other countries, or both.
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